Extensions 1→N→G→Q→1 with N=C22 and Q=C7×SD16

Direct product G=N×Q with N=C22 and Q=C7×SD16
dρLabelID
SD16×C2×C14224SD16xC2xC14448,1353

Semidirect products G=N:Q with N=C22 and Q=C7×SD16
extensionφ:Q→Aut NdρLabelID
C221(C7×SD16) = C7×C88D4φ: C7×SD16/C56C2 ⊆ Aut C22224C2^2:1(C7xSD16)448,873
C222(C7×SD16) = C7×C22⋊SD16φ: C7×SD16/C7×D4C2 ⊆ Aut C22112C2^2:2(C7xSD16)448,858
C223(C7×SD16) = C7×Q8⋊D4φ: C7×SD16/C7×Q8C2 ⊆ Aut C22224C2^2:3(C7xSD16)448,856

Non-split extensions G=N.Q with N=C22 and Q=C7×SD16
extensionφ:Q→Aut NdρLabelID
C22.1(C7×SD16) = C7×D8.C4φ: C7×SD16/C56C2 ⊆ Aut C222242C2^2.1(C7xSD16)448,163
C22.2(C7×SD16) = C7×C23.31D4φ: C7×SD16/C7×D4C2 ⊆ Aut C22112C2^2.2(C7xSD16)448,132
C22.3(C7×SD16) = C7×M5(2)⋊C2φ: C7×SD16/C7×D4C2 ⊆ Aut C221124C2^2.3(C7xSD16)448,165
C22.4(C7×SD16) = C7×C8.17D4φ: C7×SD16/C7×D4C2 ⊆ Aut C222244C2^2.4(C7xSD16)448,166
C22.5(C7×SD16) = C7×C8.Q8φ: C7×SD16/C7×D4C2 ⊆ Aut C221124C2^2.5(C7xSD16)448,169
C22.6(C7×SD16) = C7×C23.47D4φ: C7×SD16/C7×D4C2 ⊆ Aut C22224C2^2.6(C7xSD16)448,891
C22.7(C7×SD16) = C7×C22.SD16φ: C7×SD16/C7×Q8C2 ⊆ Aut C22112C2^2.7(C7xSD16)448,131
C22.8(C7×SD16) = C7×C23.46D4φ: C7×SD16/C7×Q8C2 ⊆ Aut C22224C2^2.8(C7xSD16)448,889
C22.9(C7×SD16) = C7×C22.4Q16central extension (φ=1)448C2^2.9(C7xSD16)448,144
C22.10(C7×SD16) = C14×D4⋊C4central extension (φ=1)224C2^2.10(C7xSD16)448,822
C22.11(C7×SD16) = C14×Q8⋊C4central extension (φ=1)448C2^2.11(C7xSD16)448,823
C22.12(C7×SD16) = C14×C4.Q8central extension (φ=1)448C2^2.12(C7xSD16)448,833

׿
×
𝔽